497 research outputs found

    Data Poisoning Attacks in Contextual Bandits

    Full text link
    We study offline data poisoning attacks in contextual bandits, a class of reinforcement learning problems with important applications in online recommendation and adaptive medical treatment, among others. We provide a general attack framework based on convex optimization and show that by slightly manipulating rewards in the data, an attacker can force the bandit algorithm to pull a target arm for a target contextual vector. The target arm and target contextual vector are both chosen by the attacker. That is, the attacker can hijack the behavior of a contextual bandit. We also investigate the feasibility and the side effects of such attacks, and identify future directions for defense. Experiments on both synthetic and real-world data demonstrate the efficiency of the attack algorithm.Comment: GameSec 201

    Prototypical Contrastive Learning-based CLIP Fine-tuning for Object Re-identification

    Full text link
    This work aims to adapt large-scale pre-trained vision-language models, such as contrastive language-image pretraining (CLIP), to enhance the performance of object reidentification (Re-ID) across various supervision settings. Although prompt learning has enabled a recent work named CLIP-ReID to achieve promising performance, the underlying mechanisms and the necessity of prompt learning remain unclear due to the absence of semantic labels in ReID tasks. In this work, we first analyze the role prompt learning in CLIP-ReID and identify its limitations. Based on our investigations, we propose a simple yet effective approach to adapt CLIP for supervised object Re-ID. Our approach directly fine-tunes the image encoder of CLIP using a prototypical contrastive learning (PCL) loss, eliminating the need for prompt learning. Experimental results on both person and vehicle Re-ID datasets demonstrate the competitiveness of our method compared to CLIP-ReID. Furthermore, we extend our PCL-based CLIP fine-tuning approach to unsupervised scenarios, where we achieve state-of-the art performance

    Transformer Based Multi-Grained Features for Unsupervised Person Re-Identification

    Full text link
    Multi-grained features extracted from convolutional neural networks (CNNs) have demonstrated their strong discrimination ability in supervised person re-identification (Re-ID) tasks. Inspired by them, this work investigates the way of extracting multi-grained features from a pure transformer network to address the unsupervised Re-ID problem that is label-free but much more challenging. To this end, we build a dual-branch network architecture based upon a modified Vision Transformer (ViT). The local tokens output in each branch are reshaped and then uniformly partitioned into multiple stripes to generate part-level features, while the global tokens of two branches are averaged to produce a global feature. Further, based upon offline-online associated camera-aware proxies (O2CAP) that is a top-performing unsupervised Re-ID method, we define offline and online contrastive learning losses with respect to both global and part-level features to conduct unsupervised learning. Extensive experiments on three person Re-ID datasets show that the proposed method outperforms state-of-the-art unsupervised methods by a considerable margin, greatly mitigating the gap to supervised counterparts. Code will be available soon at https://github.com/RikoLi/WACV23-workshop-TMGF.Comment: Accepted by WACVW 2023, 3rd Workshop on Real-World Surveillance: Applications and Challenge

    On Feature-Based SAR Image Registration: Appropriate Feature and Retrieval Algorithm

    Get PDF
    An investigation on the appropriate feature and parameter retrieval algorithm is conducted for feature-based registration of synthetic aperture radar (SAR) images. The commonly used features such as tie points, Harris corner, SIFT, and SURF are comprehensively evaluated. SURF is shown to outperform others on criteria such as the geometrical invariance of feature and descriptor, the extraction and matching speed, the localization accuracy, as well as the robustness to decorrelation and speckling. The processing result reveals that SURF has nice flexibility to SAR speckles for the potential relationship between Fast-Hessian detector and refined Lee filter. Moreover, the use of Fast-Hessian to oversampled images with unaltered sampling step helps to improve the registration accuracy to subpixel (i.e., <1 pixel). As for parameter retrieval, the widely used random sample consensus (RANSAC) is inappropriate because it may trap into local occlusion and result in uncertain estimation. An extended fast least trimmed squares (EF-LTS) is proposed, which behaves stable and averagely better than RANSAC. Fitting SURF features with EF-LTS is hence suggested for SAR image registration. The nice performance of this scheme is validated on both InSAR and MiniSAR image pairs

    A Semantic Graph-Based Approach for Mining Common Topics From Multiple Asynchronous Text Streams

    Get PDF
    In the age of Web 2.0, a substantial amount of unstructured content are distributed through multiple text streams in an asynchronous fashion, which makes it increasingly difficult to glean and distill useful information. An effective way to explore the information in text streams is topic modelling, which can further facilitate other applications such as search, information browsing, and pattern mining. In this paper, we propose a semantic graph based topic modelling approach for structuring asynchronous text streams. Our model in- tegrates topic mining and time synchronization, two core modules for addressing the problem, into a unified model. Specifically, for handling the lexical gap issues, we use global semantic graphs of each timestamp for capturing the hid- den interaction among entities from all the text streams. For dealing with the sources asynchronism problem, local semantic graphs are employed to discover similar topics of different entities that can be potentially separated by time gaps. Our experiment on two real-world datasets shows that the proposed model significantly outperforms the existing ones
    • …
    corecore